Quantum Computing First steps...

<u>Didier Guillevic</u> <u>didier.guillevic.net</u>

- 0. What is it?
- 1. Why should we care ?
- 2. How does it work?
- 3. What are the problems ?
- 4. Potential future applications
- 5. People / organizations involved ?
- 6. Coding, playing, learning...
- 7. Where can I learn more ?

0. What is it?

Didier Guillevic

Quantum computing

Quantum Computing (2023)

3

Some potential - A lot of hype - Probable "winter"

Most frequent words in a few hundred web documents mentioning Quantum Computing

Noisy Intermediate-Scale Quantum (NISQ) computer processor

superconducting processor: operating at close to absolute 0 temperature (0 Kelvin / -273 Celsius) at which particle motion ceases

Source: Google

photonics processor

Source: CAS-Alibaba Quantum Computing Laboratory

Source: IBM

Quantum Computing (2023)

Source: U. of Tokyo

Source: IBM

Computer versus Processor

Master: classical computer

Source: Apple

(Relatively) vast amount of storage

Code

Slave: quantum processor

Source: IBM

Commands

Results

NO storage space

NO code

ONLY 100 qubits holding *little information* for a *very short time*

Computing beginnings...

Classical computing (1939-1960)

1939: Electro-mechanical: The Bombe

Application: deciphering German encrypted messages during WWII

(Source: Wikipedia)

(Source: Wikipedia)

1945: Electronic Numerical Integrator and Computer (ENIAC): first programmable digital computer **Application**: solving numerical problems: artillery firing tables, feasibility of thermonuclear weapons

1966: Apollo Guidance Computer Application: Landing on the moon

(Source: Wikipedia)

Quantum computing (1981-2023)

(Source: Wikipedia)

(Source: Wikipedia)

(At least) Half a century later

Classical computing (2022)

2022: <u>iPhone 14 Pro</u>

Applications: ...

Facial recognition

(Source: Apple)

Face tracking

Apple's M2 chip

67 billion transistors

(Source: Apple)

Object detection

Image classification

LIDAR 3D scene Modelling and understanding

Photo artistry

Didier Guillevic

Quantum computing (2070-2100)

Applications (probable)

modelling molecules interactions

chemistry, material design, drug development

finance, agriculture

8

Didier Guillevic

1. Why should we care ?

A. Potential to break current encryption schemes

<u>RSA cryptosystem</u> relies on the practical difficulty of factoring the product of two large prime numbers (source: Wikipedia)

The world economy (on-line) depends on cryptography: information, traffic encrypted while sent over the web

RSA-250	has	250	decimal	digits	(829	bits)	

RSA-250 = 2140324650240744961264423072839333563008614715144755017714013664334551909580467961099285187247091458768739626192 0511905649310668769159001975940569345745223058932597669 9871578494975937497937

RSA-250 = 641352894770715802787901901705773890848250147429434472080238623598752668347708737661925585694639798853367 × 33372027594978156556226010605355114227940760344767554666 0037080257448673296881877565718986258036932062711

RSA-2048 has 617 decimal digits (2,048 bits)

RSA-2048 = 25195908475657893494027183240048398571429282126204032027777137836043662020707595556264018525880784406918290641249515082189298559149176184502808489120072 8449926873928072877767359714183472702618963750149718246911650776133798590957 0009733045974880842840179742910064245869181719511874612151517265463228221686 9987549182422433637259085141865462043576798423387184774447920739934236584823 8242811981638150106748104516603773060562016196762561338441436038339044149526 3443219011465754445417842402092461651572335077870774981712577246796292638635 6373289912154831438167899885040445364023527381951378636564391212010397122822 120720357

Source: <u>Wikipedia RSA_numbers</u>

797754920881418023447 215573630474547705208 747168173806936489469	<u>factored in February 2020</u> by Fabrice Boudot, Pierrick Gaudry, Aurore Guillevic, Nadia Hening Emmanuel Thomé, and Paul Zimmermann.
311685963202453234463	Using approximately 2700 CPU core-years
5/0452090/025041/2921	

Quantum Computing (2023)

ger,

1994 - Shor's algorithm

Peter Shor, professor of Applied mathematics at MIT "Shor's algorithm is a quantum algorithm for factoring the prime factors of an integer" (source: <u>Wikipedia</u>) (semiprime) Fourier transform on a quantum processor...

Practical implementation

Factoring a 2,048 bit integer would require approx. 4,000 perfect qubits and about 1,000,000,000 gates... (MIT 2017 - Quantum Computational Supremacy) Today's Noisy Intermediate Scale Quantum (NISQ) processor have about 100 "imperfect" (noisy) qubits... Coherence time of qubits is around milli- to micro-second

With today's technology and knowledge, one would need approximately:

4,000,000 qubits that would not negatively interfere too much with each other and stay coherent for a significant amount of time...

Breaking current encryption schemes

A 2,048 bit integer might *never* be factored on a quantum processor...

Not very likely in the next half century...

Generated with dreamstudio.a

Post-quantum cryptography

Development of <u>post-quantum cryptography</u> (quantum-proof / quantum-resistant schemes)

NIST Post-Quantum Cryptography Standardization

Competition started in 2016: lattice, code-based, hash-based algorithms... 2022-07-05: First winners for standardization: lattice based (CRYSTALS-Kyber) and hash-based (SPHINCS+)

Quantum key distribution

Governments / companies transition to quantum safe encryption

Stashing other countries' encrypted secrets to decrypt later (e.g. <u>Forbes 2023-01</u>)

National defence is getting ready; e.g. <u>Gov. Of Canada Quantum 2030</u>

Impact of Shor's algorithm

B. Feeding the world ("ending world hunger")

Fritz Haber (wikipedia)

(1909)

The <u>Green Revolution</u> (third agricultural revolution)

Fertilizer made using ammonia: Haber-Bosch process The Haber-Bosch process "consumes 1% of the world's total energy production." (Nature 2019) The process requires high temperatures (500 degree C) and pressures. Finding a better way (less energy requirement) to produce ammonia Some plants can synthesize ammonia directly from air and water at room temperature (Nature)

Using quantum processors to simulate quantum processes (molecules interactions)

<u>Quantum Chemistry</u> :

"Understanding electronic structure and molecular dynamics using the Schrödinger equations are central topics in quantum chemistry." (Source: Wikipedia) (1925)

Haber-Bosch process, a method used in industry to synthesize ammonia from nitrogen gas and hydrogen gas. (Source: Wikipedia)

"Solving one of the biggest problem humanity has ever faced" (feeding billions of people) (source: Veritasium)

 $\mathrm{N}_2 + 3\,\mathrm{H}_2 \longrightarrow 2\,\mathrm{NH}_3$

$$\mathrm{i}\hbarrac{\partial}{\partial t}ert \,\psi(t)
angle=\hat{H}ert \,\psi(t)
angle$$

World Food Program hunger map (840 million by 2030)

Didier Guillevic

Quantum computing

2. How does it work?

Classical computing

High level language

Software packages

Algorithms

Compilers

Machine code

Assembler

Circuits

Gates

Processor

O PyTorch

Fourier transform, sorting algorithms, balanced search trees, Hash tables, minimum spanning trees, linear programming, Maximum flow / minimum cut, ... (Algorithms - Princeton part 1, part 2)

(Source: Apple)

Computing

Quantum computing

Quantum Fourier transform, quantum phase estimation algorithm, Shor's algorithm, Grover's algorithm, quantum optimization algorithms, Eigensolver, ... (Qiskit Algorithms)

Source: IBM

Classical mechanics | Quantum mechanics

Classical

Math framework

Behaviour

Measurement

Energy levels

Superposition

Entanglement

Applies to *macroscopic* objects (planets and everyday

Newton's equations, deterministic, position, velocity, acc

Particles have definite properties (position, momentum) Deterministic, position, trajectories can be predicted pre-

Precise and not disturbing system being measured

Energy levels are continuous, can have any values

Objects can only be in one place (state) at a given time

Non existent

Quantum

objects)	Applies to <i>microscopic</i> objects (atoms and subatomic particles)
celeration	Schroedinger's equation, wave function, <i>B</i> distribution
ecisely.	<i>Wave-particle duality</i> . Behaviour <i>probabilistic</i> . Impossible to know both position and momentum.
	Affect system being measured. Exact state cannot be measured.
	Energy is quantized. Can only have certain values.
	Objects can be in multiple states at once.
	Objects properties (states) can be correlated even when far away

Theories in physics that describe the behaviour of **matter and energy**

Double-slit experiment

is

not a particle

An electron

e

(Also applies photons, atoms and molecules) not a wave

Didier Guillevic

Wave particle duality

like a particle

like a wave

- 1. Configuration of a quantum object is described by a complex wave function $\Psi(x)$
- 2. $\Psi(x)^2$ is the probability density of finding the object at position x

Three postulates of quantum mechanics

3. Superposition principle: given $\Psi_1(x)$ and $\Psi_2(x)$, it is possible to have $\Psi(x) = \alpha \Psi_1(x) + \beta \Psi_2(x)$

Superconductor

Source: QST @ Naples

Photons

Trapped ions

Source: CAS-Alibaba Quantum Computing Laboratory

Source: <u>U. Chicago</u>

Source: <u>MIT News</u>

Head or Tail

Spinning coin

Quantum Computing (2023)

20

Classical bit (binary digit) vs Quantum bit (qubit)

Bit

0 (1) dimension - 2 discrete values

Two distinct values: 0 or 1

Can be represented as two different voltage levels

Show voltage diagram

Source: KhanAcademy.org

Qubit

Unobservable: 2 dimensions - complex continuous values

Observable: Either 0 or 1 (classical bit)

Particle / wave duality

Unobservable (quantum)

Initial (zero) state

 $\begin{pmatrix} 1 \\ 0 \end{pmatrix} |^{0>} |^{1>}$

$$H = \begin{pmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & \sqrt{2} \end{pmatrix}$$

Superposition = "we have no clue what is going on ... superposition is really weird, but true" (MIT Quantum Physics 8.04)

Key concept 1: superposition

"Schrödinger's cat"

Initial (superposition) state

$$\begin{pmatrix} \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} \end{pmatrix} |0\rangle |1\rangle$$

Observable (classical)

Key concept 2: entanglement

$$C\left(H\begin{pmatrix}1\\0\end{pmatrix}\otimes\begin{pmatrix}1\\0\end{pmatrix}\right) = C\left(\left(\frac{1}{\sqrt{(2)}}\\\frac{1}{\sqrt{(2)}}\\\frac{1}{\sqrt{(2)}}\right)\otimes\begin{pmatrix}1\\0\end{pmatrix}\right) = \begin{pmatrix}1 & 0 & 0 & 0\\0 & 1 & 0 & 0\\0 & 0 & 1 & 0\\0 & 0 & 1 & 0\end{pmatrix}\begin{pmatrix}\frac{1}{\sqrt{(2)}}\\0\\\frac{1}{\sqrt{(2)}}\\0\end{pmatrix} = \begin{pmatrix}\frac{1}{\sqrt{(2)}}\\0\\\frac{1}{\sqrt{(2)}}\\0\end{pmatrix}$$

"Spooky action at a distance" Einstein (source: Wikipedia)

|00) π/2 |11) Phase π 0 3π/2

Quantum leaps

China's Micius satellite, launched in August 2016, has now validated across a record 1200 kilometers the 'spooky action" that Albert Einstein abhorred (1). The team is planning other quantum tricks (2-4).

Source: <u>science.org</u>

Quantum teleportation

Code: <u>quantum teleportation Qiskit tutorial</u> (lecture video)

Didier Guillevic

Quantum computing

3. What are the problems?

Quantum Computing (2023)

25

- 3. Scaling up

1. Noise (need for error correction)

2. <u>Quantum decoherence</u>

Classical computing (classical bit)

Quantum computing (quantum bit)

Vector of 2 complex values

Currently approx. 1,000 physical qubits for 1 logical qubit

Need for: Work on error correction schemes

1. Noise / Error correction

Issue

After a very short time (milli to micro-seconds in a superconducting processor), qubits *lose* their coherence (*state*). Impact

Circuits can only have a *limited number of gates* for a computation to remain meaningful

Find algorithms that require less gates.

Limit use of complex gates that need to be expressed (compiled into) multiple basis gates.

Need for

Limiting external noise (<u>cryogenics</u> / low temperature physics)

Limiting noise among qubits

. . .

Issue / fact

Today's quantum processors have in the order of 100 qubits

- Or approximately 4,000,000 of today's noisy (imperfect) physical qubits.
- Each qubit adds noise for the other qubits
- Each qubit is controlled by a co-axial cable (electromagnetic field)

Need for

- Work on quantum error correction (needing less physical qubits to implement a logical qubit)
- Architecture (how to arrange the qubits), limit noise from neighbouring qubits

. . .

Factoring a 2,048 bit integer (Shor's algorithm / RSA cryptosystem) requires 4,000 logical (perfect) qubits,

29

4. Potential future applications

- 1. Cryptography: breaking encryption schemes (unlikely), quantum key distribution, ...
- 3. Optimization: logistics, finance
- 4. Machine learning
- 5. Energy production

of Canada

Gouvernement du Canada

Applied Quantum Computing Challenge program

Potential future applications

2. Chemistry & material science: simulating molecule behaviours, new drugs, materials, cheaper process for ammonia

Source: Wikipedia

Source: Wikipedi

- Algorithms and simulations: advanced materials, biological systems, ...
- Enabling technologies: efficient use and scaling, error correction, compiling, ...
- <u>Canada's National Quantum Strategy</u>: research, talent, commercialization

5. People / organizations involved ?

Didier Guillevic

People involved in Quantum Computing

Theory

Hardware

Theoretical physicist

Albert Einstein

Richard Feynman

Quantum experimentalists Computer scientist

Cryogenics

Photonics

Superconductor

Engineer

Software

Compiler, software packages

Domain expert (e.g. chemistry)

Algorithm development

Applied Mathematics

Peter Shor

All groups are working in parallel...

Université m de Montréal

Institut Quantique

Computer Science and Operations Research

Cryptography and quantum information laboratory

Institute for quantum computing

Center for Quantum Information and Quantum Control

Institute for quantum science and technology

THE UNIVERSITY OF BRITISH COLUMBIA Silicon Quantum Technology Lab

Quantum Information Theory

. . .

34

Companies involved in various aspects of quantum computing or proposing classical solutions to prepare for potential "quantum threat".

State Of Canada Quantum Computing [2022]

. . .

Canadian Companies

6. Coding, playing, learning...

IBM Quantum Platform: learning, coding, testing

IBM Quantum Learning

Lab

https://learning.quantum-computing.ibm.com

IBM Quantum Platform - Compute Resources

• •					
Compute reso	urces				
Access IBM Quantum syste	ms and simulators via	a our available ac	cess plans.		
Your resources All systems		All simulator	S		
Q Search by system na	ame				
, ibm. charbrooks			libro kuj u		
System status o Onli maii	ine - Queue paused ntenance		System status Processor type	 Online Eagle r3 	
Processor type Eag	le r3				
Oubits OV	CLOPS		Oubits		
127 32	904		127		
127 52	704		127		
🔒 ibm_ cusco			🔒 ibm_ ithaca		Exp
System status • Onl	ine		System status	Online - Queue paused	
Processor type Eag	le r3,			maintenance	
			Processor type	Hummingbird r3	
Qubits		E.	Qubits		
127			65		
0 ibma kalkata			O ibme menter		
🖞 ibmq_ kolkata			占 ibmq_ mumbai		

IBM Quantum Platform - Free compute resources

Didier Guillevic

IBM quantum machines

Available systems

Sending jobs on a real quantum processor

Experiment sent to ibm_perth

Didier Guillevic

Quantum computing

7. Where can I learn more ?

IBM Quantum Learning <u>Courses, tutorials, videos (YouTube channel), summer schools, challenges, ...</u> IBM Quantum **Platform**

MITOPENCOURSEWARE

Qiskit

<u>1 year quantum course</u> for high school students & above (course created by researchers @ Berkeley, MIT, Oxford)

"nonprofit striving to connect and teach young individuals about quantum computing"

Numerous university courses from Stanford, UofT, UBC, Purdue, EPFL, X, ...

Looking Glass Universe (Youtube channel)

Quantum Computing Expert Explains One Concept in 5 Levels of Difficulty

Didier Guillevic

"open-source software development kit (SDK) for working with quantum computers" (wikipedia)

Quantum Computing (2023)

uantum Lai

A quantum processor will *never* replace a classical computer "any computational problem that can be solved by a quantum computer can also be solved by a classical computer" (IBM) "might provide faster solutions to some computational problems" (IBM); e.g. modelling molecules (quantum chemistry) Still very early stage... quantum mechanics (100 years old), idea to build a quantum processor (40 years old) Governments are preparing: education, research, commercialization Preparing for quantum resistant encryption algorithms (just in case, better be prepared than sorry)

- Large companies, banks, governments are experimenting / learning on potential use cases with current error prone quantum processors

Notation, varia, ...

Quantum Computing (2023)

46

IBM fundamentals of quantum computing

"might provide *faster* solutions to some computational problems"

"may allow us to solve certain computational problems that classical computers are too slow to solve"

"any computational problem that can be solved by a quantum computer can also be solved by a classical computer"

Basics of quantum information - Classical information

States of a classical bit

X: system being considered e.g. a bit $\Sigma = \{0,1\}$ possible states assumed by the bit

Probabilistic state: Assume we believe X is in state 0 with probability 3/4 (resp. in state 1 with prob. 1/4)

Measuring probabilistic states

"we can never "see" a system in a probabilistic state" (source: <u>IBM Quantum learning</u>) "a measurement will yield exactly one of the allowed classical states" (source: <u>IBM Quantum learning</u>) We see either state 0 and state 1 (standard basis vector)

$$0\rangle = \begin{pmatrix} 1\\ 0 \end{pmatrix} \qquad 1\rangle = \begin{pmatrix} 0\\ 1 \end{pmatrix}$$

$$\begin{pmatrix} \frac{3}{4} \\ \frac{1}{4} \\ \frac{1}{4} \end{pmatrix} = \frac{3}{4} \quad 0 \rangle + \frac{1}{4} \quad 1 \rangle$$

Flip of a fair coin

Example: a flip of a fair coin has equal probability to fall on heads and tails

Original probabilistic state:
$$\begin{pmatrix} \frac{1}{2} \\ \frac{1}{2} \end{pmatrix} = \frac{1}{2} \ heads \rangle + \frac{1}{2} \ tails \rangle$$

Observed state: either $heads \rangle = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$ or $tails \rangle = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$

Quantum systems behave in an analogous way: observed states are one of the basic states (not a combination)

Deterministic operations on probabilistic states can be represented as a *matrix vector multiplication*.

E.g. NOT operation:
$$\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$$
 If applied on state $\begin{pmatrix} 1 \\ 0 \end{pmatrix}$

Bra notation: $\langle a$ for row vectors

 $\langle a \rangle$ is the row vector having a 1 in entry corresponding to a and 0 elsewhere

For $\Sigma = \{0,1\}$, we have $\langle 0 = (1 \ 0)$ and $\langle 1 = (0 \ 1)$

Ket notation: a for **column vectors**

 $|a\rangle$ is the column vector having a 1 in entry corresponding to a and 0 elsewhere

For
$$\Sigma = \{0,1\}$$
, we have $0\rangle = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$ and $1\rangle = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$

Deterministic operations (matrix vector multiplication)

Results in
$$\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} 1 \\ 0 \end{pmatrix} = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

50

Quantum state vectors

Indices label the classical states of the system; e.g. for 3-bit system:

1. The entries α_i are complex numbers

2. The sum of absolute values squared of entries α_i equa

Quantum state vectors are unit vectors (Euclidean norm of 1.0)

Example of a qubit state

$$\psi\rangle = \begin{pmatrix} \frac{1+2i}{3} \\ \frac{-2}{3} \end{pmatrix} = \frac{1+2i}{3} \quad 0\rangle - \frac{2}{3} \quad 1\rangle$$

Quantum information

als 1:
$$\Sigma_i \, \alpha_i^{\ 2} = 1$$

 $(\alpha_0) 000$ α_1 001 α_2 010 $\alpha_3 \mid 011$ $\alpha_4 \mid 100$ $\alpha_5 \mid 101$ $\alpha_6 \mid 110$ α_7 / 111

Measuring quantum states (standard basis measurement)

- "measurements act as the interface between quantum and classical information" (source: IBM learning)
- each classical state results with probability equal to absolute value squared of the entry
- E.g. a 3 bit quantum state: the classical state 010 appears with probability $|lpha_2|^2$

$$\psi = \begin{pmatrix} \alpha_0 \\ \alpha_1 \\ 001 \\ \alpha_2 \\ 010 \\ \alpha_3 \\ 011 \\ \alpha_4 \\ 100 \\ \alpha_5 \\ 101 \\ \alpha_6 \\ 110 \\ 111 \end{pmatrix}$$

Unitary matrix operations (reversible) on a single qubit

Pauli operations

$$I = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \sigma_x / X = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \sigma_y / Y = \begin{pmatrix} 0 \\ i \end{pmatrix}$$

identity

NOT (bit flip)

Hadamard operation

$$H = \begin{pmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \end{pmatrix}$$

Phase operations

$$P_{\theta} = \begin{pmatrix} 1 & 0 \\ 0 & e^{i\theta} \end{pmatrix} \qquad \text{e.g}$$

 $\begin{pmatrix} -i \\ 0 \end{pmatrix}, \sigma_z / Z = \begin{pmatrix} 1 & 0 \\ 0 & -i \end{pmatrix}$

phase flip

$$S = P_{\pi/2} = \begin{pmatrix} 1 & 0 \\ 0 & i \end{pmatrix} \qquad T = P_{\pi/4} = \begin{pmatrix} 1 & 0 \\ 0 & \frac{1+i}{\sqrt{2}} \end{pmatrix}$$

Representation of multi qubit states using <u>Bloch sphere</u>

54

A tautology, obviously true, proved with logic and integers $N(A, \overline{B}) + N(B, \overline{C}) \ge N(A, \overline{C})$

$N(A, \bar{B}, C) + N(A, \bar{B}, \bar{C}) + N(A, B, \bar{C}) + N(\bar{A}, B, \bar{C}) \ge N(A, B, \bar{C}) + N(A, \bar{B}, \bar{C})$

Bell's inequality

